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ABSTRACT: This study sheds light on the changes pro-
duced by the effects of cold-drawn fibers on the microstruc-
ture and macrostructure of viscose fibers. The optical
properties and strain produced in viscose fibers were meas-
ured interferometrically at room temperature. Structural pa-
rameters were calculated, such as the work per unit of
volume, the reduction in entropy due to elongation, and the
harmonic mean specific refractivity. In addition, the result-
ing data were used to calculate the optical stress coefficient
and optical configuration and to apply the Mooney–Rivlin
equation to determine the constants. Also, the number of

crystals per unit of volume and the average orientation
angle for uniaxial stretching were calculated with the exten-
sion ratios. The relation between the true stress and strain
hardening was calculated. The average value of the maxi-
mum birefringence was determined to equal 0.046. The rela-
tions between the optical and mechanical changes with
different parameters were established for the studied fibers.
Microinterferograms and curves were drawn for illustration.
VVC 2008 Wiley Periodicals, Inc. J Appl Polym Sci 110: 872–879, 2008
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INTRODUCTION

Natural, synthetic, and manmade fibers play impor-
tant roles in the textile industry, in which most
fibers are now mixed with others. Thus, an investi-
gation of the characteristic properties of these fibers
is important. Many studies have been conducted on
the characterization of the structural, optical, and
mechanical properties of viscose fibers.1–5

The application of the various interferometric
methods to investigating the optical behavior of
optically anisotropic fibrous materials has been dis-
cussed extensively by several authors.6–9 The refrac-
tive indices along and across the fiber axis and the
optical birefringence are parameters characterizing
the molecular orientation and hence physical struc-
ture of these materials.

The phenomenon of cold drawing is common to
both amorphous and semicrystalline polymers. In
the drawing process, the isotropic starting material
is transformed into a highly anisotropic fiber struc-
ture. The molecular chains are oriented along the
drawn direction, and the crystal lamellae are stacked
roughly normal to the draw direction.10

Orientation in polymers can be produced by sev-
eral processes, such as hot stretching of a molten
polymer followed by rapid cooling of the melt, cold

drawing, or cold rolling. The drawing process gives
rise to the preferred orientation of the molecular
chain axis. The degree of orientation can vary signif-
icantly from one fiber to another, depending on the
history of the fiber during its manufacture and sub-
sequent processing operations. Orientation in a poly-
mer has been extensively measured by several
authors.11–13

Statton14 proposed that shrinkage should be attrib-
uted to the refolding of chains that have been pulled
out in the drawing process. Crystallinity is generally
induced by a high level of strain brought about by
stretching and is termed strain- (or stress-) induced
crystallization.15

A reduction in the entropy (DS) due to the stretch-
ing process can change the optical properties of
polymeric materials. Also, the retractive forces of the
network are produced by a decrease in DS of freely
joined chains when they are stretched.
This work focuses attention on the use of the prin-

cipal optical parameters obtained by interferometry
and mechanical parameters for determining some
essential indicative industrial parameters. The mean
polarizability of the monomer per unit of volume
and other optomechanical parameters were also
determined.

THEORETICAL CONSIDERATIONS

The mean values of the refractive indices of the fiber
and the total mean birefringence were calculated
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with equations extensively used in our previous
publications.16–19 With the Kuhn–Treloar theory, we
can calculate the number of chains per unit of vol-
ume (m),20 which depends on the number of crystalli-
tes in the polymer material. For an ideal network21

m ¼ NAq
M

(1)

where NA is Avogadro’s number, q is the polymer
density, and M represents the monomer molecular
units (molar weight ¼ 162.14) for the viscose fibers.
For a collection of chains containing m chains

W ¼ mKT
2

D2 �D�1
� �

þ 3 D�1 � 1
� �� �

(2)

where W is the work per unit of volume, K is Boltz-
mann’s constant, T is the absolute temperature, and
D is the draw ratio (D ¼ l/l0, where l0 is the initial
length and l is the elongation produced, and D ¼ 1
þ d, where d is the strain).

The stress (r) is related to the elongation as
follows:

r ¼ @W

@D
¼ mKT D�D�2

� �
(3)

The elongation leads to a reduction of DS:

DS ¼ � 1

2
Km 1þ dð Þ2þ 2

1þ dð Þ � 3

� �
(4)

The quantity mKT in eq. (2) is equivalent to the
shear modulus (G). This term is sometimes written
in terms of the mean molecular mass of the chains
(M), that is, between successive points of crosslink-
age. Then

G ¼ mKT ¼ qRT=M (5)

where R is the gas constant. The shear elastic mod-
ulus is related to Young’s modulus (E) for elastic
materials when Poisson’s ratio (l) is about 0.5,
so the elastic tensile modulus is 3 times greater
then G.

Calculation of E and l

The moduli of elasticity (G and E) are related by the
following simple equation:

E ¼ 3G (6)

This defines the relation between E and G to a good
approximation for an elastomer.22

l for fibers of a very small radius contracts by
loading and, under the assumption of a constant vol-
ume, can be obtained as follows:17

l ¼ 1=2D (7)

Relations between E, G, and the bulk modulus (B)

By applying and arranging the following equations,
we can determine B and the compressibility (b):

E ¼ 3Bð1� 2lÞ ¼ 2ð1þ lÞG (8)

ð1� 2lÞ ¼ E=3 B ¼ bE=3 (9)

Calculation of the cohesive energy density (CED)
and square of the solubility parameter (d)

The value of B was calculated in terms of CED,
which represents the energy theoretically required to
move a detached segment into the vapor phase. This
in turn is related to d2:23

B ¼ 8:04 ðCEDÞ (10a)

B ¼ 8:04d2 (10b)

The factor 8.04 arises from the Lennard–Jones
consideration.

Evaluation of the maximum birefringence (Dnmax)

The birefringence (Dn) is related to Dnmax for fully
oriented, so Dnmax can be determined with the fol-
lowing relation:24

Dn
Dnmax

¼ 3

2

D3

D3 � 1ð Þ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD3 � 1Þ

p sin�1 ðD3 � 1Þffiffiffiffiffiffi
D3

p
" #

� 1

2

(11)

With eq. (11), we evaluated Dnmax, and we found
that the average value was 0.046 for viscose fibers
when it was estimated by the optomechanical
method.

Mooney–Rivlin equation

The storable elastic energy of the network (W00) is
only a function of the strain invariant. It can be rep-
resented by the following equation for uniaxial
elongation:

W00 ¼ C1 D2 þ 2D�1 � 3
� �� �

þ C2 D�2 þ 2D�3
� �

(12)

where C1 and C2 are empirical constants called the
Moony Rivlin Coefficients. r can be calculated with
the following equation:25
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r ¼ 2 C1 þ C2D
�1

� �
D2 �D�1
� �

(13)

Equation (13) is the well-known Mooney–Rivlin
equation. A plot of the reduced stress [r/2(D2 �
D�1)] as a function of the reciprocal of the elonga-
tion (D�1) gives a straight line whose slope is C2 and
whose intercept with the ordinate is C1. In practice,
the constant C1 has proved to be a useful measure of
the crosslink density. The second term can be attrib-
uted to energy dissipation resulting from chain
interactions during deformation, and in conformity
with this view, C2 becomes zero when the elastomer
is swollen by solvents.

Optical stress coefficient (Cs)

The constant Cs is called the optical stress coefficient.
The value of this coefficient is dependent on the
chemical structure of the polymer. The value of this
coefficient also depends solely on the mean refrac-
tive index (n) and the optical anisotropy of the ran-
dom link, as shown in the following equation:

Cs ¼
2p

45KT

n2 þ 2
� 	2

n

2
64

3
75 ajj � a?
h i

(14)

where ak and a? are the polarizabilities along and
across the axis of such units, respectively. Cs is inde-
pendent of the chain length and the degree of
crosslinking.

With the previous equation, it can be seen that Dn
for elastomers is proportional to the applied stress.

Calculation of the optical configuration
parameter (Da)

Da is related to Cs as follows:26

Da ¼ 45KTCs=2p

n2 þ 2
� 	2

0
B@

1
CA n (15)

Mean polarizability of the monomer unit (a)

The refractive index of a polymer depends on the
total polarizability of the molecules; this leads to the
Lorentz–Lorenz equation with the following
equation:27

n2 � 1

n2 þ 2
¼ ma

3w
(16)

where a is caused by the deformation of the electron
clouds in and between the molecules of the dielectric
under the influence of the effective field (i.e., the

internal field) and w is the permittivity of free space
(8.85 � 10�12 Fm�1).
De Vries27 reported a theory, based on an internal

field with the aid of classical electromagnetic theory,
in which he generalized the Lorentz–Lorenz equa-
tion. Thus, for monochromatic light, the well-known
Lorentz–Lorenz equation becomes the same as eq.
(16). The right-hand portion of eq. (16) is propor-
tional to q (kg/m3) of the medium and can also be
written as follows:

n2 � 1

n2 þ 2
¼ eq (17)

where e (m3/kg) is the specific refractivity of the iso-
tropic dielectric.

Dn of the homogeneously uniaxially
stretched polymer

With eq. (14), it can be seen that Dn for elastomers is
proportional to the applied stress.21 When the contri-
butions of the chains to the network anisotropy are
summed and the Lorentz–Lorenz relation is used to
obtain Dn between the refractive indices parallel (nk)
and perpendicular (n?) to the extension direction,
the result is

nk � n? ¼ N0cs
90w

½n2 þ 2�2

n
D2 �D�1
� �

(18)

Cs ¼
cs

90wKT
½n2 þ 2�2

n
(19)

where N0 is the number of chains between crosslinks
per unit of volume at the absolute temperature and
cs is the segment anisotropy. From eqs. (18) and (19),
we can determine cs and then N0.

Dn of the partially crystalline polymer

If we assume that the partially crystalline polymer
consists of separate crystalline and amorphous parts,
the change in the crystal direction on stretching is
affine with the deformation of the amorphous ma-
trix, but the crystal does not change in size on
stretching. The average orientation angle (hcos2 yci)
with respect to the uniaxial stretching extension ratio
(D) is

cos2 hc

 �

¼ D3

D3 � 1
1� tan�1ðD3 � 1Þ1=2

ðD3 � 1Þ1=2

" #
(20)

If there are M crystals per unit of volume and they
have polarizability ac along the c axis and polariz-
abilities ab and aa (ab ¼ aa) perpendicular to it, then
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the crystal contribution to Dn of the medium is given
by

S ¼ Dn
Da

18w
hP2ðcos2 hcÞi

n

½n2 þ 2�2
(21)

where

P2ðcos2 hcÞ ¼ 1=2ð3 cos2 hc � 1Þ (22)

EXPERIMENTAL

Material

The viscose fibers were manufactured by Misr Rayon
(Cairo, Egypt). The untreated sample had a glass-
transition temperature of 45.98C. Cross sections of vis-
cose fibers were viewed with a high-power optical
microscope and found to be irregular in shape with
an area of 1.165 � 10�3 mm2 (as shown in Fig. 1).

Application of two-beam interferometry

A Pluta microscope was joined to a microstrain de-
vice that was designed and discussed in detail previ-
ously.28 This device was modified to measure the
stress and strain. The modification enabled us to
measure the mechanical properties and correlate
them with the optical properties. Viscose fibers were
fixed on a microscope slide in a suitable position in
the drawing device. A glass coverslip was placed on
the viscose fibers, which were immersed in a liquid
with a refractive index of 1.528 at 218C, and mono-
chromatic light with a wavelength of 546.1 nm was
used. The device was transferred to the Pluta micro-
scope, which was adjusted for the totally duplicated
image of the viscose fibers, in which the two fringes
shifted for light vibrating parallel and perpendicu-
larly to the fiber axis. An interference pattern was
recorded for each drawing process. Figure 2(a,b)
shows two photographs of totally duplicated images
for viscose fibers at draw ratios of 1.113 and 1.313.

To estimate the initial draw ratio (D0) of viscose
fibers, the refractive indices and hence Dn were
determined with the drawing device. Therefore,
plotting Dn as a function of the draw ratio led to a
straight line whose equation was in the form of Dn
¼ A þ B(D þ D0), where D is the experimental draw
ratio. For an undrawn fiber (D ¼ 1), we considered
the fiber medium to be isotropic (i.e., Dn ¼ 0). Intro-
ducing these characteristic values into the linear
equation, we obtained the real value of D0. Also, the
extrapolation of Dn versus D should cut the negative
part of axis D at D0. Therefore, the actual draw ratio
was found to be D þ 0.113.29

Figure 3 shows the relationship between W and
the draw ratios for the viscose fibers, indicating that
W increased because of cold drawing. Figure 4
shows the relationship between the reduction of DS

Figure 1 Cross section of irregular viscose fibers.

Figure 2 Two-beam interferometry microinterferograms
from completely duplicated images of viscose fibers: (a)
draw ratio ¼ 1.113 and (b) draw ratio ¼ 1.313.

Figure 3 Relation between W and the draw ratio of the
viscose fibers.
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and the draw ratios. It indicates the decrease in DS
due to cold drawing, and Figure 5 shows the rela-
tionship between Dn and DS under different draw
ratios, throwing light on the decrease in DS and
energy changes. Figure 6 describes the relationship
between Cs and the draw ratios for the viscose
fibers, showing the increase in Cs with different
draw ratios, and Figure 7 shows the relationship
between Da and the draw ratios. Figure 8 presents
the relation between N0 and the draw ratios of the
viscose fibers; also, Figure 9 shows the relation
between the crystals per unit of volume (S) and the
draw ratios. Figures 8 and 9 show that N0 and S
decreased with increasing draw ratios. Table I lists
some calculated experimental parameters with dif-
ferent draw ratios: m, r, ek, e?, e, a, and hcos2 yi.

Also, Table II lists the values of G, E, l, B, b, CED,
and d with different draw ratios.

Crystallinity

As is well known, niso
30 is linearly proportional to

the density, and the density shows a linear depend-
ence on the degree of crystallinity (vc):

31

vc ¼ ½niso � 1:5077�=0:0456 (23)

This equation allows us to evaluate vc from niso at
niso values of 1.5077 (vc ¼ 0%) and 1.5533 (vc ¼
100%).

Density equation

The density was determined with the following
equation by the well-known crystallinity relation:

q ¼ vcðqc � qaÞ þ qa (24)

where qc is 1.62532 and qa is 1.489 g/cm3. Figure 10
shows the variation of the decrease in the density
with an increase in the draw ratios of the viscose
fibers.

Relation between the true stress (rtrue)
and strain hardening

If the Gaussian elasticity relation was substituted for
the Langevin theory, a true stress–strain curve33

Figure 4 Relation between DS and the draw ratio of the
viscose fibers.

Figure 5 Relation between Dn and DS of viscose fibers
with different draw ratios.

Figure 6 Relation between Cs and the draw ratio of the
viscose fibers.

Figure 7 Relation between Da and the draw ratio of the
viscose fibers.
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could be simply represented (Fig. 11) with the fol-
lowing equation:

rtrue ¼ Yþ constðD2 � 1=DÞ (25)

where rtrue is the true stress, that is, the stress which
is uniform over the volume of material under con-
sideration; Y is the yield stress; and D is the exten-
sion ratio. This equation is subsequently called the
Gaussian equation. Equation (25) can also be rear-
ranged to represent the nominal or engineering
stress (reng):

reng ¼ Y=Dþ GpðD� 1=D2Þ (26)

where Gp is the strain-hardening modulus. Using
this form of the equation, we can note that necking
conditions require dreng/dD to be negative at low
values of D:

dreng=dD ¼ �Y=D2 þ Gpð1þ 2=DÞ2 (27)

It should be less than 0 when D ¼ 1, for which the
critical condition is Y/Gp > 3.

RESULTS AND DISCUSSION

Part of the modern trend in fiber research is to alter
fiber properties. One of the methods for property

modification involves the effects of the cold-drawing
process under different conditions. Several studies
have been reported on the effects of mechanical
processes on the structures of synthetic and natural
fibers. The birefringence orientation, density, crystal-
linity, and elasticity are known as some of the prop-
erties that affect the textile quality for the main end
use. Thus, the calculated density could also be used
to follow the continuous changes occurring during
the physical changes of the samples under investiga-
tion. The obtained values of the evaluated crystallin-
ity and density were dependent on the nature of the
polymer mechanical process.34–37

Under cold drawing, results were obtained for the
optical and mechanical parameters of a polymeric
material that was produced with modified physical
properties due to changes in DS, W, and W00 and op-
tical parameters. Also, to explain the different varia-
tions due to mechanical effects, several interfering
structural processes had to be taken into considera-
tion, and they have been discussed in detail else-
where.29 Although the degree of orientation always
increases in the course of drawing, crystallinity can
also change in both directions. Three types of behav-
ior can be distinguished: deformation does not affect
the phase structure of an undrawn amorphous sam-
ple, it remains amorphous after drawing, and a crys-
talline sample does not change in its degree of
crystallinity; deformation is accompanied by partial
destruction of the original structure and a reduction

Figure 8 Relation between N0 and the draw ratio of the
viscose fibers.

Figure 9 Relation between S and the draw ratio of the
viscose fibers.

TABLE I
Values of m, r, e, e‖, e⊥, a, and hcos2 hi with Different Draw Ratios

Draw
ratio

m
(�1027)

r
(�106 Pa)

ek

(�10�4 m3/kg)
e?

(�10�4 m3/kg)
e

(�10�4 m3/kg)
a

(�10�39) hcos2 yi

1.113 5.6954 7.083 2.020 1.977 1.998 1.4236 0.3770
1.153 5.6936 9.281 2.022 1.976 1.999 1.4236 0.3918
1.193 5.6917 11.35 2.023 1.975 1.999 1.4237 0.4061
1.273 5.6910 15.18 2.025 1.974 2.000 1.4238 0.4336
1.313 5.6910 16.97 2.026 1.974 2.000 1.4238 0.4468
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of the crystallinity; and deformation is accompanied
by additional crystallization and an increase in the
crystallinity. Figures 4 and 5 show the heat when
they were reversibly stretched. These observations
were consistent with the view that DS of the poly-
mer decreased on stretching. As shown in Figures 8
and 9, N0 and S decreased because of deformation
from the drawing processes. These decreases were
attributed to cold drawing, which may in turn have
arisen from changes in DS of folded chains of the
original structure of the crystalline phase
deformation.

From another interpretation perspective, the
changes in the obtained results for e, a, Cs, cs, and
Dn are attributable to modifications of the electrical
properties arising from existing space changes and
the remaining electric field in the polymers after
preparation.

Also, it is important to note that Cs depends only
on n (which is not in itself a network property) and
on the optical anisotropy of the random link. It docs
not involve the number of chains per unit of volume
and is therefore independent of the degree of cross-
linking of the network. Thus, these results for vis-
cose cellulose xanthate show the effect of the
molecular structure on strain hardening with a simi-
lar cellulose ester.12

CONCLUSIONS

From the aforementioned measurements and calcula-
tions of the various optical and mechanical parame-
ters and their changes with the cold-drawing
process, the following conclusions can be drawn:

1. There are isothermal kinetic changes due to the
drawing process that are confirmed by the
changes in DS, which are accompanied by
changes in Dn. Also, the retractive forces of the
network are produced by a reduction of DS of
freely joined chains when they are stretched.

2. Changes in DS throw light on the energies that
play a role in clarifying the phase boundary
between the amorphous and crystalline regions.

3. The application of the Mooney–Rivlin equation
shows a nearly linear relationship. The con-
stants C1 and C2 were determined to be �4.467
� 104 and 1.1631 � 107, respectively.

4. Dnmax (the maximum birefringence observed in
the partially (fully) oriented fiber) was achieved
with eq. (11), and its average value was equal
to 0.046 for viscose fibers; this was an accepta-
ble result according to ref. 27.

5. The mechanical properties Y, Gp, and reng

change with the applied stress. The mechanical
constants of eq. (25), Y and Gp, were found to
be 2 � 106 and 2 � 107, respectively.

TABLE II
Values of G, E, l, B, b, CED, and d with Different Draw Ratios

Draw ratio G (�107 Pa) E (�107 Pa) l B (�108 Pa) b (�10�9 Pa�1) CED (�107 Pa�1) d (Pa)

1.113 2.398 6.950 0.449 2.282 4.383 2.838 5327
1.153 2.4237 6.947 0.434 1.745 5.730 2.171 4659
1.193 2.447 6.945 0.419 1.431 6.988 1.780 4219
1.273 2.493 6.944 0.393 1.079 9.265 1.342 3664
1.313 2.515 6.944 0.381 0.971 10.30 1.208 3475

Figure 10 Variation of q and the draw ratio of the viscose
fibers.

Figure 11 Variation of rtrue as a function of D2 � 1/D of
the viscose fibers.
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6. Changes in the density are accompanied by
changes in the mass redistribution within the
fiber chains. This also indicates the changes in
the chain (segmental) orientation, which are the
result of deformation.

From these results and considerations, we have
concluded that the practical importance of these val-
ues lies in an acceptable evaluation of optomechani-
cal parameter changes for viscose fibers.
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